
Algorithms for Optimizing Production DNA Sequencing

Eva Czabarka ∗ Goran Konjevod † Madhav V. Marathe ‡ Allon G. Percus §

David C. Torney ¶

Abstract

We discuss the problem of optimally “finishing” a partially

sequenced, reconstructed DNA segment. At first sight,

this appears to be computationally hard. We construct a

series of increasingly realistic models for the problem and

show that all of these can in fact be solved to optimality

in polynomial time, with near-optimal solutions available

in linear time. Implementation of our algorithms could

result in a substantial efficiency gain for automated DNA

sequencing.

1 Introduction and summary of results

The Human genome comprises 24 chromosomes. Each
chromosome contains a double helix of DNA, and each
DNA strand is a polymer made up of nucleotides (or
bases). Four different kinds of bases, denoted A, C, G
and T, occur. Each of the two strands on the double
helix is directed, and the paired strands have opposite
(or antiparallel) orientations. The paired DNA strands
exhibit what is known as Watson-Crick complementary
basepairing [6]: if an A appears at a certain position
on one strand, a T appears opposite it on the other
strand, and vice versa. Likewise, if a C appears at a
certain position on one strand, a G appears opposite
it on the other strand, and vice versa. (Thus, each
of the two paired strands contains essentially the same
information).

Sequencing a DNA strand means determining the
order in which the bases occur on the strand. The goal

∗Department of Mathematics, University of South Carolina,
Columbia, SC 29208. E-mail: czabarka@math.sc.edu. This

research was supported in part by NSF contract DMS 9701211.
†Mathematical Sciences Department, Carnegie Mellon Univer-

sity, Wean Hall, Pittsburgh, PA 15213 and TRANSIMS, MS–

M997, Los Alamos National Laboratory, Los Alamos, NM 87545.
E-mail: konjevod@andrew.cmu.edu.
‡Computer Research and Applications Group (CIC–3), MS–

P990, Los Alamos National Laboratory, Los Alamos, NM 87545.

E-mail: marathe@lanl.gov.
§Computer Research and Applications Group (CIC–3), MS–

B265, Los Alamos National Laboratory, Los Alamos, NM 87545.
E-mail: percus@lanl.gov.
¶Theoretical Biology and Biophysics Group (T–10) and Center

for Human Genome Studies, MS–K710, Los Alamos National
Laboratory, Los Alamos, NM 87545. E-mail: dct@lanl.gov.

of the Human Genome Project is to find a sequence of
a representative genome, containing 3× 109 bases. The
most powerful DNA-sequencing procedure is the chain
termination method developed by Sanger et al. [5, 2].
Given a DNA segment, the Sanger process sequences
approximately the first 500 bases (one read length) oc-
curring in the segment. Because of the aforementioned
particulars of duplex DNA strands, this process, in fact,
allows us to sequence one read length from one strand
at one end of the segment, and one read length from the
other strand at the other end of the segment.

Since only the ends of a DNA segment can be
sequenced, it is necessary to obtain many small seg-
ments, and then reconstruct the larger sequence from
the smaller components. A common method for do-
ing so involves first generating large numbers of BAC
clones from the chromosomal DNA. These clones are of
the order of 105 bases in length [2] and are (unspecified)
intervals of the double stranded DNA. Through a pro-
cedure known as mapping , one verifies that the clones
one obtains do indeed cover the entire chromosome —
generally with some, but minimal, overlap. Each clone,
however, is still of the order of hundreds of read lengths,
so it must be broken up further. Through hydrodynamic
shearing of many copies of an individual clone, a large
number of subclones are created. To a good approxima-
tion, this is a stochastic process, where the subclones
are randomly selected intervals from the parent clone,
with a uniform distribution over the clone. The lengths
of the subclones (if not the locations) are under good
experimental control, and are typically of the order of
4 or 5 read lengths. It is these subclones that are then
sequenced, from both ends, as described above. This
procedure is referred to as shotgun sequencing [5, 2],
and is depicted schematically in Figure 1a.1

The locations of the sequenced regions on the par-
ent clone are not known a priori ; assembling the se-
quence requires inferring these locations using compu-
tational procedures that take advantage of any over-

1Note that it is sometimes possible to generate subclones

directly from the whole genome, avoiding the use of BAC clones
and the mapping problem. Our analysis applies equally well to
such a case.

1

2

1 read
length Clone

Subclone Subclone

Subclone

(a)

1 read
length Clone

Subclone Subclone

Subclone

Walking

(b)

Figure 1: Schematic depiction of (a) shotgun sequenc-
ing, and (b) walking. Tick marks represent read lengths,
and lightly shaded regions show shotgun-sequenced in-
tervals on the clone. Walking extends known sequence
by one read length at a time.

laps present [1]. Shotgun sequencing therefore involves
a necessary redundancy, since enough subclones must
be sequenced to insure a reasonable amount of over-
lap. Furthermore, there is a small error rate inherent
in the experiment — around 1%. An overall error rate
of one base in 10,000 is desired. Sequencing each base
three times, and using “majority rule” would achieve
this objective, under the hypothesis of independent er-
rors. Detailed criteria for DNA sequence accuracy were
established at a recent meeting at Bermuda [4].

Any moderate amount of shotgun sequencing will
presumably leave some regions of a parent clone insuf-
ficiently sequenced according to these criteria. Once
the locations of these regions have been inferred and
sequence assembly has taken place insofar as possible
— though there is no general means of determining
the length of completely unsequenced regions — the se-
quence gaps require further “finishing” (or “closure”).
This is done by walking experiments: a primer is con-
structed using a sequence that has already been de-
termined, allowing a sequenced region to be extended
by one read length. This is shown in Figure 1b. Un-
like shotgun sequencing, the locations for walking are
under good experimental control (apart from some re-
strictions that, for the sake of clarity, we omit for the
moment). The procedure, however, is also much more
labor-intensive and time-consuming.

This presents the experimenter with two optimiza-
tion problems. The first is deciding the right balance
of how much (inexpensive, but stochastic) shotgun se-
quencing to perform, versus how much (expensive, but
deterministic) walking to perform, in order to achieve
finished sequence according to the established crite-

ria. The second is, given a certain amount of shot-
gun sequencing, how precisely to perform the walks.
Since shotgun subclone positions are random, the insuf-
ficiently sequenced regions are generally of a non-integer
number of read lengths. Walking experiments, however,
sequence one read length at a time. It is therefore a non-
trivial problem to decide where to place the walks, in
order to meet the criteria with minimal redundancy.

Solving these two problems is of more than just the-
oretical interest: increasing throughput and reducing
cost are essential to the ambitious timetable of the Hu-
man Genome Project. An efficiency gain of, say, 25%
at this stage would considerably ease one of the major
bottlenecks in the sequencing process. Our goal in this
paper is to address these issues, using a series of pro-
gressively more realistic models. We discuss the ques-
tion of how much shotgun sequencing should be per-
formed, using a relatively simple analytical framework
known as the site model . We then turn to the algorith-
mic issue of determining how walking should be done,
using a more complex coverage model , and find prov-
ably optimal strategies that run in polynomial time.
We also provide extremely simple and efficient polyno-
mial time approximation algorithms with “good” per-
formance guarantees; these algorithms could be used
instead of polynomial time algorithms when computa-
tional time is a potential bottleneck. The only other
work of similar nature we are aware of is by Gordon,
Abajian and Green [3]. In contrast to our algorithms,
the work of [3] on algorithms for “automating finishing”
do not offer any performance guarantees.

The rest of the paper is organized as follows. In Sec-
tion 2 we discuss the site model; Section 3 discusses the
coverage model and the associated algorithms. Finally
Section 4 contain concluding remarks and directions for
future work.

2 Site Model

The site model sacrifices accuracy in its portrayal of se-
quencing experiments, but provides valuable insights. It
allows us, notably, to determine the number of shotgun
subclones minimizing the average cost for finishing the
sequence of a parent clone. This model does not deal
with the sequence assembly process itself (thus ignoring
the issue of shotgun redundancy necessary to infer the
locations of the sequenced regions), and it does not yield
finishing algorithms. Nevertheless, its predictions are
useful in characterizing the performance of such algo-
rithms. The purpose of this “toy model” is to simplify
the process so that standard optimization techniques
suffice. The finishing of real sequences will employ more
complex combinatorial optimization algorithms.

Imagine a clone as a chain of “sites”, each being one

3

read length (say 500 bases) long. Take the length of the
entire parent clone to be LC sites. Now make an im-
portant simplification: let all read lengths correspond
exactly to these sites, so that everything involves an in-
teger number of sites. We are therefore approximating
our system with a coarse one-dimensional lattice. In
the schematic representation of Figure 1, all sequenced
regions would now lie exactly between two tick marks.
This is a tremendous assumption, as it turns the prob-
lem of where to perform walks into a trivial one. How-
ever, it also produces analytical estimates that we could
not otherwise obtain. Within the site constraint, we
shall now present three different flavors of the model,
increasing both in complexity and in closeness to exper-
imental reality.

2.1 Simple case
In the first and most basic flavor of the model,

take the cost of shotgun sequencing to be CS for each
read length sequenced, and the cost of walking to be
CW for each read length sequenced (assume CW >
CS). Given n shotgun-sequenced read lengths (which
corresponds to n/2 subclones, since both ends of a
subclone are sequenced), the total shotgun cost will be
nCS . The question is then how much walking is, on
average, necessary to fulfill the Bermuda criteria given
n shotgun-sequenced sites in random positions.

Due to various experimental considerations, of the
LC sites on the parent clone only the last LI (a slightly
smaller number) are actually of interest in sequencing
— this is a region known as the insert . Each insert
site that is shotgun-sequenced fewer than three times
will have to have its deficit made up by walking. The
expected total cost Csimple for shotgun sequencing and
subsequent finishing of all insert sites may thus be given
as follows:

Csimple = nCS +
2∑
j=0

{
(3− j)CW

× IE(# insert sites shotgun-sequenced j times)

}
.

The probability of a site being sequenced by any
given shotgun subclone is 2/LC . Therefore, the
expected number of insert sites that are shotgun-
sequenced exactly j times is given by a binomial dis-
tribution, and

Csimple = nCS +
2∑
j=0

{
(3− j)CW(2.1)

×LI
(
n/2
j

)(
2
LC

)j (
1− 2

LC

)n/2−j}
.

0
�

500
�

1000 1500 2000
n

0

1000

2000

3000

4000

C
si

m
pl

e/
C

s

�

Finishing cost vs. number of shotgun sites

Cw/Cs=3
Cw/Cs=2
Cw/Cs=1.5
Cw/Cs=1.05

Figure 2: Expected total finishing cost Csimple, in units
of CS , as a function of number of shotgun-sequenced
sites n. 4 different ratios CW /CS are used. LI = 375
and LC = 400.

Using realistic length values LI = 375 and LC =
400, Figure 2 shows Csimple as a function of n, given
various ratios CW /CS . While one cannot in general
find a closed-form expression for the n̂ that minimizes
Csimple in (2.1), from the figure there appears to be a
unique optimum unless CW /CS is sufficiently close to
unity. One may in fact show analytically that for large
LC , n̂ > 0 whenever CW /CS > LC/LI .

2.2 General case
The second flavor of our “toy model” takes into

account an experimental fact that was ignored earlier:
when a walk is performed multiple times at a single site,
only the first walk costs the full CW . All subsequent
walks at that site may take advantage of primer material
already prepared for the first one, and have a marginal
cost that is in fact very close to CS .

For the site model as described above, this does not
much change (2.1). A similar binomial distribution is
used, and now:

Cgeneral = nCS +
2∑
j=0

{
[CW + (2− j)CS](2.2)

×LI
(
n/2
j

)(
2
LC

)j (
1− 2

LC

)n/2−j}
.

The minima for various ratios CW /CS are seen in
Figure 3. Note that for a given value of the ratio,
walking is generally “cheaper” here than in the simpler

4

0
�

500
�

1000 1500 2000
n

0

1000

2000

3000

4000

5000

C
ge

ne
ra

l/C
s

�

Finishing cost vs. number of shotgun sites

Cw/Cs=9
Cw/Cs=5
Cw/Cs=3
Cw/Cs=1.5

Figure 3: Expected total finishing cost Cgeneral, in units
of CS , as a function of number of shotgun-sequenced
sites n. 4 different ratios CW /CS are used. LI = 375
and LC = 400.

flavor of the model. Therefore, only for larger values of
CW /CS does a unique optimum n̂ > 0 appear.

2.3 Strand case
The final flavor of the site model incorporates a

far greater subtlety. We have seen that a shotgun
subclone provides one read length of known sequence,
from one strand at one end of the subclone, and a
second read length of known sequence, from the other
strand at the opposite end of the subclone. We have
been assuming that knowledge of one DNA strand is
equivalent to knowledge of the other strand, as the
two exhibit complementary basepairing. This is not
completely accurate. The shotgun method can, for
example, occasionally insert or delete a base. Given
such experimental realities, the Bermuda criteria require
not only that each base be sequenced at least three
times, but also that both strands be represented in the
redundant sequencing. Thus, even if a base is shotgun-
sequenced three times, if the three trials all fall on the
same strand, it must still be sequenced once on the
opposite strand.

The strand distinction also complicates the walking
cost. As before, the first walk costs CW . A subsequent
walk on a given strand at a given site, however, costs CS
if and only if (a) a previous walk was performed there,
on the same strand , and (b) the site is covered by a
shotgun subclone (though not necessarily sequenced by
a shotgun read length). Otherwise it costs the full CW .

How do these realities change the model? C must
now take into account several new cases. If a site is not
subcloned at all, the walking cost will be the full 3CW . If
a site is subcloned but not shotgun-sequenced, it will be
necessary to walk twice on one strand (the second time
taking advantage of the economy of multiple walks),
and once on the other strand, at a cost of 2CW + CS .
If a site is shotgun-sequenced exactly once, it will be
sufficient to walk twice on the opposite strand, at a
cost of CW + CS . If a site is shotgun-sequenced twice,
regardless of whether these are on the same or opposite
strands it will be necessary to walk once more, at a
cost of CW . Finally, if a site is shotgun-sequenced three
or more times but on one strand only, it will still be
necessary to walk the opposite strand, at a cost of CW .

The expected total cost is then:

Cstrand = nCS

+ 3CW IE(# sites not subcloned)
+ [2CW + CS]
× IE(# sites subcloned, not shotgun-sequenced)

+ [CW + CS]
× IE(# sites shotgun-sequenced exactly once)

+CW

× IE(# sites shotgun-sequenced exactly twice)
+CW

× IE(# sites shotgun-sequenced three or more
times on one strand only).

Since we only need to walk insert sites, and assum-
ing that all subclones have equal length LS > 1, the
relevant contributions are

IE(# sites not subcloned) = LI

(
1− LS

LC

)n/2
,

IE(# sites subcloned, not shotgun-sequenced)

= LI

{(
1− 2

LC

)n/2
−
(

1− LS
LC

)n/2}
,

IE(# sites shotgun-sequenced exactly once)

= LI
n

2
2
LC

(
1− 2

LC

)n/2−1

,

IE(# sites shotgun-sequenced exactly twice)

= LI

(
n/2
2

)(
2
LC

)2(
1− 2

LC

)n/2−2

,

IE(# sites shotgun-sequenced three or more times
on one strand only)

5

= 2LI

{(
1− 1

LC

)n/2

−
2∑
j=0

(
n/2
j

)
1
LC

j

(
1− 2

LC

)n/2−j .

Note that the final expression simply consists of the
number of sites not sequenced at all on a given strand,
minus the number of sites not sequenced at all on that
strand but sequenced exactly j times (0 ≤ j ≤ 2) on the
other strand. The entire quantity is multiplied by two
to account for both strands. Collecting the foregoing
terms yields

Cstrand = nCS + LI

{
(CW − CS)

(
1− LS

LC

)n/2
(2.3)

+ 2CW

(
1− 1

LC

)n/2
+ CS

(
1− 2

LC

)n/2
+ nCS

1
LC

(
1− 2

LC

)n/2−1

+ 2CW

(
n/2
2

)
1
LC

2

(
1− 2

LC

)n/2−2
}
.

The cost now has a dependence on the subclone
length LS , in addition to the other parameters. As we
see in Figure 4, however, this dependence is relatively
weak; even varying the value of LS from 2 to 16 read
lengths does not change results dramatically. Note
also that for a given ratio CW /CS , the total cost
Cstrand is significantly greater than Cgeneral. This is
due to the additional walks imposed by the strand
consideration, as well as the fact that multiple walks are
not economical as often. In fact, Cstrand is remarkably
close to Csimple (Figure 2), both in the shape of the curve
and in the quantitative cost. Like Figure 2, Figure 4
shows a unique n̂ > 0 as long as CW is not too close to
CS . Furthermore, n̂ appears very close in the two flavors
of the model, suggesting that Csimple itself provides good
estimates of the optimal amount of shotgun sequencing
to perform for the strand case.

3 Coverage model

So far, we have addressed the issue of how much shotgun
sequencing to perform. In the site model, we restricted
the positions of subclones to discrete spacings, of one
read length each, on the parent clone. In reality,
of course, there is no such constraint; subclones can
begin at any base along a DNA strand. Furthermore,
while we have examined the expected total cost of
shotgun sequencing and finishing in the model, and have
seen that there is generally a clear optimal amount of

0
�

500
�

1000 1500 2000
n

0

1000

2000

3000

4000

C
st

ra
nd

/C
s

Finishing cost vs. number of shotgun sites

Cw/Cs=3 (Ls=2)
Cw/Cs=3 (Ls=16)
Cw/Cs=2 (Ls=2)
Cw/Cs=2 (Ls=16)
Cw/Cs=1.5 (Ls=2)
Cw/Cs=1.5 (Ls=16)
Cw/Cs=1.05 (Ls=2)
Cw/Cs=1.05 (Ls=16)

Figure 4: Expected total finishing cost Cstrand, in units
of CS , as a function of number of shotgun-sequenced
sites n. 4 different ratios CW /CS are used; light lines are
for subclone length LS = 2 and dark lines for subclone
length LS = 16. LI = 375 and LC = 400.

shotgun sequencing in order to minimize this cost, we
have not had to pay attention to how to perform the
walking process optimally. The site constraint makes
this a trivial problem.

Without the site constraint, finding an optimal
walking algorithm becomes nontrivial. Let us now
consider a more realistic model, the coverage model ,
where we no longer require that subclone positions
be restricted to discrete sites. For a given layout
of shotgun subclones, we now have to “walk” gaps
that in general take up a non-integer number of read
lengths. This cannot be done with perfect efficiency,
i.e., sequencing each base three and only three times.
The problem is therefore to meet the Bermuda criteria
of threefold redundancy while minimizing the excess, or
more specifically, minimizing the total walking cost.

One paradigm for visualizing the shotgun coverage
profile is the “cityscape” shown in Figure 5. At any
given position along the DNA strand, there is a profile
height, giving the number of times the base has been
sequenced. For the purposes of our analysis, we assume
that a walk may be performed starting at any position,
and has the effect of incrementing the profile height, by
one, over one read length.2 Walks must be performed so

2In reality, experimental constraints somewhat restrict the

options of where to perform walks, but for the purposes of a formal
understanding of the problem we ignore these for now. We will
return to this point in the conclusion.

6

0

1

2

3

4

Position

sequenced
of times

1 read
length

Figure 5: Coverage profile, showing the number of
times positions along a section of DNA strand have
been shotgun-sequenced. Dashed line shows new profile
height after performing one walk.

that the profile ends up with a height of at least three,
at all positions. The goal is to determine where to place
the walks, so that this can be done at minimal cost.

More formally, the problem may be stated as fol-
lows: we are given a set of unit intervals J1, . . . , Jn
(shotgun-sequenced read lengths) contained inside the
region [0,m1]. In the notation of our site model, m1 =
LC . Furthermore, let m0 = LC − LI , so that the insert
region of interest will be [m0,m1].

The set of intervals {Ji} are identified with a profile
function p, defined as:

p(x) = |{Ji | x ∈ Ji}|.

Given a requirement of k-fold redundant coverage (k =
3 in the Bermuda criteria), let us call k − p(x0) the
deficiency of profile p at a given point x0. The goal is
now to find a new set of unit intervals W1,W2, . . . ,W`

(walking-sequenced read lengths) allowing us to cover
the profile over the region [m0,m1] at minimal cost.
This means that once these new intervals are added to
the profile, no more positive deficiencies exist. The cost
C is a function of the new intervals. We will consider
the same three cases for C as we did in the site model.

3.1 Simple case
For the simple flavor of the model, each walk costs

a fixed CW . There is no economy in multiple walking.
The cost is thus proportional to the number ` of new
intervals W1,W2, . . . ,W` added. The problem is to
decide how to place these intervals so as to minimize
the number necessary.

Given required coverage redundancy k, define a
breakpoint for a profile p(x) to be any point x0 in
the profile such that the deficiency is non-positive
immediately to the left of x0 and positive immediately

to the right of x0. Now consider the following “greedy”
walking algorithm:

Algorithm (A)

(1) Let i = 1.
(2) Let x0 be the leftmost breakpoint of p in [m0,m1].
Place an interval Wi beginning at x0.
(3) Update profile p to incorporate Wi, i.e., increment
p(x) on x ∈ [x0, x0 + 1).
(4) If the profile is not yet covered, increment i and
repeat at step (2).

Theorem 3.1. Algorithm (A) covers the profile with
the minimum number of walks.

Proof. Consider, in left-to-right order, the intervals used
in an optimal solution — a solution with a minimum
number of walks. Shift each walk as far to the right
as possible, whilst preserving the covering. (The final
walks shifted in this way may extend past the region of
the coverage profile, but this is not a matter of great
concern.) Once this procedure is finished, scan the
profile again in left-to-right order. By construction,
each walk now begins at a point where, without it, there
would be a breakpoint. This is precisely the solution
produced by Algorithm (A). 2

3.2 General case
Let us now reintroduce the distinction between

single and multiple walks. As in the general flavor of
the site model, let the first walk at a given position cost
CW , but let all subsequent walks at that same position
cost only CS per walk. Thus, we may now have µ-fold
multiple walks, each costing CW + (µ− 1)CS . Defining
α = (CW−CS)/CS , the cost per walk is then CS(µ+α).

The most straightforward way of formulating this
version of the problem is to ask for the set of unit
intervals W1,W2, . . . ,W`, with associated multiplicities
µ1, µ2, . . . , µ` (µi ∈ {1, . . . , k}), that minimizes

∑̀
i=1

(µi + α)

subject to the constraint that ∀x ∈ [m0,m1],∑
i: x∈Wi

µi ≥ k − p(x).

Clearly, the choice of optimal algorithm now de-
pends on α. Before considering an exact approach,
however, let us discuss some possible algorithms giving
near-optimal solutions with performance guarantees.

Approximations. Two cases will be examined: where
α is small, and where α is large.

7

Take the case where α is close to 0 (this means that
a µ-fold multiple walk is close in cost to µ single walks).
Apply Algorithm (A) from the previous subsection.

Theorem 3.2. The cost of Algorithm (A) is within a
factor 1 + α(k − 1)/(k + α) of optimality.

Proof. Let ` be the number of walks performed in
Algorithm (A), weighted by their multiplicities in the
case of multiple walks. By Theorem 3.1, there is no way
of covering the profile using fewer than the equivalent
of ` single walks. Each of these costs at least CS , and
in the optimal solution at least one out of every k walks
must cost CW (walks with multiplicity higher than k
are never useful), so Opt ≥ `[CS + (CW − CS)/k].

The most a single walk can cost, however, is CW ,
so the cost of Algorithm (A) is less than or equal to
`CW , hence less than or equal to Opt CW /[CS +(CW −
CS)/k]. The approximation factor is therefore at worst
CW /[CS + (CW − CS)/k] = 1 + α(k − 1)/(k + α). 2

Now take the case where α is large (this means that
µ single walks are substantially more expensive than a
µ-fold multiple walk.) Let us consider a new kind of
greedy approximation algorithm. We will show that,
given a redundancy requirement of k = 3 as in the
Bermuda criteria, this algorithm provides a performance
guarantee of 1 + 2/(α+ 1). Then we will strengthen the
analysis slightly, to obtain the guarantee of 1 + 1/(α +
3/2) for the same algorithm, under an assumption that
is generally satisfied in practice.

Algorithm (B)

(1) Let i = 1.
(2) Let x0 be the leftmost breakpoint of p in [m0,m1].
Let µ = max{k−p(x) | x ∈ [x0, x0 +1) }. Place a µ-fold
interval Wi beginning at x0.
(3) Update profile p to incorporate Wi, i.e., increase p(x)
by µ on x ∈ [x0, x0 + 1).
(4) If the profile is not yet covered, increment i and
repeat at step (2).

Lemma 3.3. Algorithm (B) covers the profile with the
minimum number of (potentially multiple) walks.

Proof. First of all, note the key difference between
this and Theorem 3.1. Here, we do not weight the
walk count with multiplicities; even if a walk Wi has
multiplicity µi, it still counts as just one walk for the
present purposes. The rest of the proof is similar to
that of Theorem 3.1. Consider any solution that uses
the minimum number of (potentially multiple) walks,
and shift each walk as far to the right as possible. Each
walk now begins at a breakpoint, and has a multiplicity

corresponding to the most deficient point in the region
it spans. Take the first walk (from the left) which
is not in the solution provided by Algorithm (B). By
construction, Algorithm (B) has a walk starting at the
same point, but with higher multiplicity. Increase the
multiplicity of the step of the optimal solution to that
of the step in Algorithm (B) (this does not increase
the number of steps). By repeating this procedure we
ultimately obtain the solution produced by Algorithm
(B) without increasing the number of steps. 2

Theorem 3.4. The cost of Algorithm (B) is within a
factor 1 + (k − 1)/(α+ 1) of optimality.

Proof. Let ` be the number of (potentially multiple)
walks performed in Algorithm (B). By Lemma 3.3, there
is no way of covering the profile using fewer than ` such
walks, and there is no way that any one of these can cost
less than CW (this is the cost when it has multiplicity
1), so `CW ≤ Opt.

The most a multiple walk can cost, however, is
CW + (k − 1)CS , so the cost of Algorithm (B) is less
than or equal to `[CW + (k − 1)CS], hence less than or
equal to Opt[CW +(k−1)CS]/CW . The approximation
factor is therefore at worst [CW + (k − 1)CS]/CW =
1 + (k − 1)/(α+ 1). 2

Given k = 3 as in the Bermuda criteria, in the
case where α > 1 (CW > 2CS) we can strengthen the
foregoing analysis slightly and improve the bound. The
following lemma will be used.

Lemma 3.5. If CW > 2CS, an optimal cover can be
created for a profile of height 3 with no three walks
overlapping.

Proof. Let W1,W2,W3 be three intervals in a valid
cover, with multiplicities µ1, µ2, µ3, starting at points
x1 ≤ x2 ≤ x3 such that x3 − x1 < 1. If µ1 + µ2 ≥ 3,
push W3 to the right. This eliminates the triple overlap
while preserving the cover. Otherwise µ1 = µ2 = 1, in
which case increase µ1 and µ3 by 1, and remove W2.
Since W2 is contained entirely within the range of W1

and W3, this eliminates the triple overlap, preserves the
cover, and changes the cost by 2CS − CW < 0. Thus,
a triple overlap can always be eliminated without an
increase in cost. 2

Theorem 3.6. For k = 3 and CW > 2CS, the cost
of Algorithm (B) is within a factor 1 + 1/(α + 3/2) of
optimality.

Proof. Consider an optimal solution. By Lemma 3.5,
this can be done in such a way that no three walks

8

ever overlap. Now, working from left to right, eliminate
all remaining (two-walk) overlaps by increasing the
multiplicity of the first as necessary and shifting the
second to the right as necessary. This will increase the
solution cost in the following cases:
(a) µ1 = 1, µ2 = 1 −→ µ1 = 2, µ2 = 1
(b) µ1 = 1, µ2 = 2 −→ µ1 = 3, µ2 = 2
(c) µ1 = 1, µ2 = 3 −→ µ1 = 3, µ2 = 3
(d) µ1 = 2, µ2 = 1 −→ µ1 = 3, µ2 = 1
(e) µ1 = 2, µ2 = 2 −→ µ1 = 3, µ2 = 2
(f) µ1 = 2, µ2 = 3 −→ µ1 = 3, µ2 = 3

It may be seen that the worst-case increase in cost
occurs in case (b), where the ratio of new to old cost is:

2CW + 3CS
2CW + 1CS

= 1 +
1

α+ 3/2
.

In this newly modified solution, walks have been
shifted to the right so that they no longer overlap.
Thus, each walk begins at what would otherwise be a
breakpoint. This is precisely the layout of Algorithm
(B)’s solutions, though some of the multiplicities might
be greater here (there is no way they could be smaller
and still provide a valid cover). Algorithm (B) is then,
at worst, as costly as this procedure, whose cost is at
worst a factor of 1 + 1/(α+ 3/2) over the optimal cost.
The approximation factor in Algorithm (B) is therefore
at worst 1 + 1/(α+ 3/2). 2

Exact solution. Let us now describe a dynamic
programming algorithm that outputs an optimal cover
for a profile of height k = 3 in time O(mn2), where m is
the insert length m = m1 −m0 and n is the number of
shotgun-sequenced read lengths in the initial profile. We
assume hereafter that CW > 2CS , so that Lemma 3.5
holds.

Dynamic programming algorithms work recursively,
optimally solving smaller instances (subproblems) of the
problem at hand, and then combining the solutions
to these subproblems into an optimal solution for the
original problem. In order to describe a dynamic
programming algorithm, we therefore need to specify a
scheme for decomposing the problem into subproblems,
and then establish an upper bound both on the total
number of subproblems and on the number of ways of
decomposing a subproblem into further subproblems.

The decomposition scheme involves defining the
updated profile

qi(x) = p(x) +
∑

j≤i: x∈Wj

µj ,

so that qi(x) represents the profile at step i, after the ith
walk has been added. We now state two useful lemmas:

Lemma 3.7. Any optimal solution can be modified at
no cost, so that there is a left-to-right ordering of the
covering intervals W1, . . . ,W` in which every Wi begins
at the first breakpoint in the profile qi−1.

Proof. The leftmost interval (W1) in the optimal solu-
tion may be shifted rightwards until its left endpoint lies
above the first breakpoint of the profile p, without in-
curring any additional cost. Now consider the updated
profile at step 1, consisting of p with W1 in its new po-
sition, and repeat the same argument for W2, the next
leftmost interval. The lemma follows inductively. 2

Lemma 3.8. For an optimal solution as described by
Lemma 3.7, the number of possible breakpoint positions
at which walks W1, . . . ,W` can begin is at most n per
unit length and at most mn over the entire insert length.

Proof. In the initial profile p(x), there are exactly n
shotgun-sequenced read lengths J1, . . . , Jn, so there can
be at most n breakpoints in all. When this profile
gets updated with walking intervals, a given breakpoint
can move from its initial location x0 to a new location
x0+1. This means that the set of all possible breakpoint
positions corresponds to the initial n positions plus or
minus integer values. Any given unit interval [x1, x1+1)
can contain, at most, n of these, and since the entire
insert length is m, there are at most mn in all. 2

Henceforth we shall look for an optimal cover that
has the form described in Lemma 3.7, with the restric-
tions imposed by Lemma 3.5. (It is a simple exercise to
verify that these two Lemmas are consistent with each
other.) Thus, without loss of generality, we restrict our-
selves to all feasible solutions where no more than two
intervals overlap, and where no interval can be shifted
to the right without making the solution infeasible. The
following further lemma then holds:

Lemma 3.9. In order to determine the optimal
placement and multiplicities of all remaining walks
Wi+1, . . . ,W` necessary to cover an updated profile qi,
it is sufficient to specify:
(1) The initial profile p.
(2) The position of the first breakpoint x0 in qi.
(3) The length by which Wi extends past x0.
(4) The multiplicity µi of Wi.

Proof. From Lemma 3.7, optimal placement of remain-
ing walks only requires knowledge of qi(x) for x ≥ x0,
i.e., beyond its first breakpoint. Now, of the i walks
already present in qi, the only one that can possibly ex-
tend beyond x0 is Wi; if, say, Wi−1 did as well, then sub-
sequently placing Wi+1 at x0 (following the prescription
of Lemma 3.7) would result in three overlapping walks,

9

violating Lemma 3.5. Thus, to obtain qi(x) for x ≥ x0,
we simply increase p(x) by µi over x ∈Wi, all of which
information is given. 2

Now we present the dynamic programming algo-
rithm itself. Define Ωj,kx to be the subproblem of opti-
mally covering an updated profile whose first breakpoint
is at the xth possible position (out of the mn allowed by
Lemma 3.8), and whose rightmost walk extends j po-
sitions past the breakpoint and has multiplicity k. By
Lemma 3.9, this information is sufficient to specify the
subproblem completely. Then do the following:

Algorithm (C)

(1) Let x = mn.
(2) Consider subproblem Ωj,kx for all possible j values
and all possible k values.
(3) Place a walk at the first breakpoint (position x).
All possible multiplicities of this walk (up to 3) give
updated profiles corresponding either to a trivial case
(for x near mn) or else a subproblem already solved
earlier. Compute solutions for all these multiplicities,
looking up previously generated solutions as necessary.
(4) Record best solution (best out of the new walk’s
possible multiplicities) for all j and all k.
(5) Decrement x, and repeat at step (2) until x reaches
the initial profile’s first breakpoint position.

Theorem 3.10. Algorithm (C) generates an optimal
solution in at most 6mn2 operations.

Proof. From Lemma 3.7, there exists an optimal solu-
tion where each walk begins at what would otherwise
be a breakpoint. By construction, Algorithm (C) gives
the least costly solution of this sort, thus the optimum.

The number of operations performed by Algorithm
(C) increases as the total number of lookups per sub-
problem, times the total number of subproblems. There
are at most 3 lookups per subproblem, corresponding to
the 3 possible multiplicities for the added walk. The to-
tal number of subproblems is equal to the product of
the total number of possible values for x, j and k. From
Lemma 3.8, there are at most mn possible breakpoint
positions for x. Since walks are placed from left to right,
the rightmost walk in a subproblem can extend no more
than one unit length past the breakpoint, so again from
Lemma 3.8 there are at most n possible positions for
j. Finally, this rightmost walk cannot have multiplicity
greater than 2 unless it does not extend at all past the
breakpoint (in which case its multiplicity is anyway un-
necessary for specifying the subproblem), so there are at
most 2 possible values for k. This gives at most 2mn2

possible subproblems. Multiplying this by the 3 pos-
sible lookups per subproblem results in at most 6mn2

operations. 2

3.3 Strand case
We now model the DNA segment — more realisti-

cally — as being double-stranded. Recall that for the
strand case, both the cost of placing walks and the cov-
erage criteria are more complicated. Walks with mul-
tiplicity greater than 1 can only be performed in areas
covered by one of the n/2 shotgun subclones (Figure 1).
We therefore define a new type of profile, the subclone
profile s(x), to be 1 when x is in a subcloned (though
not necessarily sequenced) region and 0 otherwise.

Even though the two strands contain largely the
same information, in the double-stranded model walks
are always performed on a specific strand. We require
that each base be sequenced at least once on each
strand, and (as before) at least three times in all. This
suggests some refinements to our earlier definitions. The
profile p(x) will now consist of two components p+(x)
and p−(x), collectively denoted by the vector quantity
p±(x), representing the shotgun coverage of the two
strands. A deficiency will occur at a point x0 if either
p+(x0) + p−(x0) < 3 or one of the two components of
p±(x) equals zero. A breakpoint, as before, is any point
where the deficiency becomes positive.

Given these refinements, let us generalize our dy-
namic programming algorithm to the strand case, pro-
ducing an optimal cover in time O(mn3). We start with
a weaker form of Lemma 3.7.

Lemma 3.11. Any optimal double-stranded solution
can be modified at no cost, so that there is a left-to-right
ordering of the covering intervals W1, . . . ,W` in which
every Wi (with associated multiplicity µi) satisfies the
following property:
(1) If µi = 1, Wi begins at the first breakpoint x0 in the
updated profile q±i−1.
(2) If µi > 1, Wi begins at the rightmost point x1 ≤ x0

such that s(x) = 1 on x ∈ [x1, x1 + 1).

Proof. Similar to the proof of Lemma 3.7, except that
if µi > 1, Wi may only be shifted rightwards within
the allowable region, i.e., a region covered by shotgun
subclones, where s(x) = 1. 2

Given this ordering of the covering intervals,
Lemma 3.8 holds in almost unchanged form: subclone
coverage must always end at a breakpoint of p±, so the
number of possible positions at which the covering in-
tervals Wi can begin is at most n per unit length and
mn over the entire insert length (as before).

Lemma 3.9 is revised as follows for the strand case:

Lemma 3.12. In order to determine the optimal
placement and multiplicities of all remaining walks
Wi+1, . . . ,W` necessary to cover an updated profile q±i ,
it is sufficient to specify:

10

(1) The initial shotgun profile p±.
(2) The subclone profile s.
(3) The position of the first breakpoint x0 in q±i .
(4) The lengths by which Wi−1 and Wi extend past x0.
(5) The strands on which Wi−1 and Wi are performed.
(5) The multiplicities µi−1 and µi.

Proof. From Lemma 3.11, optimal placement of remain-
ing walks only requires knowledge of q±i (x) for x ≥ x1,
where x1 ≤ x0 is the rightmost point such that s(x) = 1
on x ∈ [x1, x1 + 1). If x1 < x0, the subsequent walk
Wi+1 will be placed at x0 if µi+1 = 1 and at x1 if
µi+1 > 1; in the latter case, however, it is simple to
verify that any following walks will be placed at or af-
ter x0. Therefore, we really only require knowledge of
q±i (x) for x ≥ x0.

Now, of the i walks already present in q±i , onlyWi−1

and Wi can possibly extend past x0; if Wi−2 did as well,
then we would have three overlapping intervals Wi−2,
Wi−1 and Wi, two of which would be on one strand
and one of which would be on the other (if they were
all on the same strand, the middle interval Wi−1 could
always be moved to the other strand while preserving
the cover). However, if two intervals on one strand and
one interval on the other strand all extend past x0, x0

cannot be a breakpoint.
Thus, to obtain q±i (x) for x ≥ x0, we simply

update p±(x) by µi−1 over x ∈ Wi−1 and by µi over
x ∈ Wi (for each walk we increase the component of
p± corresponding to the strand on which the walk is
performed), all of which information is given. 2

Note that, unlike in the single-strand model,
nowhere here do we require that CW > 2CS .

Theorem 3.13. Dynamic programming generates an
optimal solution in at most 64mn3 operations.

Proof. The algorithm proceeds very similarly to Algo-
rithm (C), except that now the subproblem must keep
track of the position, multiplicity and strand for two
walks, resulting in 16mn3 subproblems. Details are left
as an exercise to the reader. Given a subproblem, the
next walk may in general be performed on either strand
and have either multiplicity 1 or 2 (multiplicity 3 is eas-
ily excluded). This gives 4 lookups per subproblem,
thus 64mn3 operations at most. 2

4 Discussion and Conclusions

From relatively simple combinatorial optimization tech-
niques applied in an unconventional arena, we find that
polynomial-time algorithms and even good linear-time
approximations exist for problems that might at first
sight appear computationally hard.

There is a considerable list of further experimental
realities that should be incorporated into these mod-
els. Optimization subject to probabilistic (rather than
known) shotgun positions is one important open prob-
lem: sequence assembly is sufficiently difficult that in
reality one cannot unambiguously infer the positions
of shotgun-sequenced regions. Further constraints on
walking positions are also important: experimentally it
is not always possible to create a primer at the precise
position specified by our algorithms. Other open issues
include multiple (variable) finishing criteria, parallelized
walking capabilities and double-end clone sequencing.

Nevertheless, the success of dynamic programming
in dealing with the restrictions imposed by the double-
stranded problem suggests that it is robust enough to
yield optimal strategies under additional constraints
— with, at worst, a higher exponent in the running
time. Analysis along these lines could ultimately lead
to complete automation and optimization of sequencing
experiments, goals that presently remain distant.

Acknowledgments

The authors wish to acknowledge Mark Mundt and two
anonymous SODA reviewers for their valuable input
concerning the details of sequencing experiments, and
the current state-of-the-art.

References

[1] F. Alizadeh, R.M. Karp, L.A. Newberg and
D.K. Weisser, Physical mapping of chromosomes: a
combinatorial problem in mathematical biology , Algo-
rithmica, 13 (1995), pp. 52–76.

[2] S. Anderson, M.H. de Bruijn, A.R. Coulson,
I.C. Eperon, F. Sanger, and I.G. Young, Complete se-
quence of bovine mitochondrial DNA. Conserved fea-
tures of the mammalian mitochondrial genome, J. Mol.
Biol., 156 (1992), pp. 683–717.

[3] D. Gordon, C. Abajian, and P. Green, Consed: A
graphical tool for sequence finishing , Genome Research,
8 (1998), pp. 195–202.

[4] Human Genome Program, U.S. Department of Energy,
JGI and “Bermuda-quality” sequence, Human Genome
News, 9:3 (1998), p. 7, at: http://www.ornl.gov/

hgmis/publicat/hgn/v9n3/07bermud.html. See also:
http://www.gene.ucl.ac.uk/hugo/bermuda2.htm.

[5] F. Sanger, S. Nicklen and A.R. Coulson, DNA sequenc-
ing with chain-terminating inhibitors, Proc. Nat. Acad.
Sci. USA, 74 (1977), pp. 5463–5467.

[6] J.D. Watson and F.H.C. Crick, A structure for deoxyri-
bose nucleic acid , Nature, 171 (1953), pp. 737–738.

[7] J.D. Watson, N.H. Hopkins, J.W. Roberts, J.A. Steitz
and A.M. Wiener, Molecular Biology of the Gene,
Fourth Edition, Vol. I, Benjamin/Cummings, Menlo
Park, NJ, 1987.

http://www.ornl.gov/hgmis/publicat/hgn/v9n3/07bermud.html
http://www.ornl.gov/hgmis/publicat/hgn/v9n3/07bermud.html
http://www.gene.ucl.ac.uk/hugo/bermuda2.htm

	Introduction and summary of results
	Site Model
	Simple case
	General case
	Strand case

	Coverage model
	Simple case
	General case
	Strand case

	Discussion and Conclusions

